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Abstract
The formalism of quantization deformation is reviewed and the Weyl–Moyal-
like deformation is applied to systematic construction of the field and lattice
integrable soliton systems from Poisson algebras of dispersionless systems.

PACS numbers: 02.30.Ik, 02.40.Ma

1. Introduction

Recently, various aspects of the Moyal deformation theory and its application to the integrable
field systems, which lead to the so-called Moyal-type Lax dynamics, have become of increasing
interest [1–5]. The aim of this paper is to present a complete scenario of construction of the
field and lattice soliton systems by Weyl–Moyal-like deformations from Poisson algebras of
underlying dispersionless systems. The Weyl–Moyal-like deformation is a special case of the
deformation quantization.

In the theory of evolutionary systems (dynamical systems) one of the most important
issues is a systematic method for construction of integrable systems. As integrable systems
we understand those which have an infinite hierarchy of symmetries and conservation laws.
It is well known that a very powerful tool, called the classical R-matrix formalism, proved to
be very fruitful in systematic construction of the field and lattice soliton systems as well as
dispersionless systems (see [6–18] and the references there).

The crucial point of the formalism is the observation that integrable dynamical systems
can be obtained from the Lax equations

Lt = ad∗
AL = [A,L] (1.1)

i.e. a coadjoint action of some Lie algebra g on its dual g∗, with the Lax operators taking values
from this Lie algebra g∗ ∼= g, equipped with the Lie bracket [· , ·]. From (1.1) it is clear that we
confine to such algebras g for which the dual g∗, related to g by the duality map 〈· , ·〉 → R,
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can be identified with g. So, we assume the existence of a scalar product (· , ·)g on g which is
symmetric, non-degenerate and ad-invariant

(adab, c)g + (b, adac)g = 0. (1.2)

This abstract representation (1.1) of integrable systems is referred to as the Lax dynamics.
On the space of smooth functions on the dual algebra g∗ there exists a natural Lie–Poisson

bracket

{H,F }(L) := 〈L, [dF, dH ]〉 L ∈ g∗ H,F ∈ C∞(g∗) (1.3)

where dF, dH are differentials belonging to g. A linear map R : g → g, such that the bracket

[a, b]R := [Ra, b] + [a,Rb] (1.4)

is a second Lie product on g is called the classical R-matrix. A sufficient condition for R to be
an R-matrix is

[Ra,Rb] − R[a, b]R + α[a, b] = 0 a, b ∈ g (1.5)

where α is some real number, called the Yang–Baxter equation YB(α).
Then, bracket (1.4) is related to another Lie–Poisson bracket and the appropriate Poisson

tensor is as follows:

{H,F }1(L) := 〈L, [dF, dH ]R〉 =: 〈dF, θ1(L) dH 〉. (1.6)

The Casimir functions C of the natural Lie–Poisson bracket (1.3), i.e.

{C,F } = 0 ∀F ∈ C∞(g∗) (1.7)

are in involution with respect to the Lie–Poisson bracket (1.6). Hence, the vector fields
generated by such Casimir functions

Ltn = θ1(L) dCn = [R (dCn) , L] (1.8)

commute mutually as the map θ ◦ d is a Lie algebra homomorphism. Moreover (1.8) are
Hamiltonian equations. The hierarchy of evolution equations (1.8) is the Lax hierarchy with
common infinite set of symmetries and conserved quantities. In this sense (1.8) represents a
hierarchy of integrable evolution equations.

It is known that the systems (1.8) are tri-Hamiltonian with respect to three Poisson brackets
called the linear, quadratic and cubic, reflecting the dependence on the L. The linear tensor
θ1(L) takes the form [7]

θ1(L) dH = −adLR(dH) − R∗adL dH (1.9)

where R∗ is the adjoint of R, i.e. (Ra, b)g = (a, R∗b)g. The quadratic case is more complex.
A tensor θ2(L) [12]

θ2(L) dH = A1(L dH)L − LA2(dH L) + S(dH L)L − LS∗(L dH) (1.10)

defines a Poisson tensor if the linear maps A1,2 : g −→ g are skew-symmetric solutions of the
YB(α) (1.5), where α 
= 0, and the linear map S : g −→ g with adjoint S∗ satisfies

S ([A2a, b] + [a,A2b]) = [Sa, Sb]

S∗ ([A1a, b] + [a,A1b]) = [S∗a, S∗b].
(1.11)

In the special case when 1
2 (R − R∗) satisfies the YB(α), for the same α as R, under the

substitution A1 = A2 = R − R∗, S = S∗ = R + R∗, the quadratic Poisson operator (1.10)
reduces to [7]

θ2(L) dH = −adLR ad+
L dH − LR∗adL dH − R∗ (adL dH) L (1.12)
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where ad+
LA = LA+AL, and conditions (1.11) are equivalent to YB(α) for R. Another special

case is when the maps A1,2 and S originate from decomposition of the R-matrix (1.17)

R = A1 + S = A2 + S∗ (1.13)

where A1,2 are skew-symmetric. Then the sufficient condition for the Poisson property of θ2

is [14]

[A1,2a,A1,2b] + [a, b] = A1,2([A1,2a, b] + [a,A1,2b]). (1.14)

Finally, the cubic tensor θ3 takes the form

θ3(L) dH = −adLR(L dHL) − LR∗(adL dH)L. (1.15)

For constructing the simplest R-structure let us assume that the Lie algebra g can be split
into a direct sum of Lie subalgebras g+ and g−, i.e.

g = g+ ⊕ g− [g±, g±] ⊂ g±. (1.16)

Denoting the projections onto these subalgebras by P±, we define the R-matrix as

R = 1
2 (P+ − P−). (1.17)

It is easy to verify that (1.17) solves YB
(

1
4

)
.

Following the above scheme, we are able to construct in a systematic way integrable
Hamiltonian systems, with infinite hierarchy of involutive constants of motion and infinite
hierarchy of related commuting symmetries, once we fix a Lie algebra. For example, the
Lie algebra of pseudo-differential operators with the commutator leads to the construction
of soliton systems [6–11]. The Lie algebra of shift operators leads to lattice field systems
[12–14]. On the other hand, the Poisson algebras (which are Lie algebras with associative,
commutative multiplication) of formal Laurent series lead to the construction of dispersionless
systems [15–18].

As well known, a quasi-classical limit of field and lattice soliton systems gives related
integrable dispersionless systems. We would like to invert this procedure and construct field
and lattice soliton systems from some classes of integrable dispersionless systems through a
Weyl–Moyal-like deformation quantization procedure. Actually, we will do it on the level of
their Lax representations.

The idea behind the deformation quantization theory [19–22] is that a classical system
can be obtained from a quantum system by the quasi-classical limit � → 0, where � is
the Planck constant divided by 2π . Therefore, the quantization of classical systems should
be done by appropriate deformations depending on a formal parameter �. The classical
fields (observables) belong to the associative commutative algebra of smooth functions, with
standard multiplication, equipped with the Poisson bracket {· , ·}. The idea of deformation
quantization relies on the deformation of the usual multiplication to the new associative but
non-commutative product called �-product. It depends on the formal parameter �, with the
assumption that the �-product in the limit � → 0 reduces to the standard multiplication and
also that the Lie bracket {f, g}� := 1

�
(f �g−g �f ), where f, g are smooth functions, reduces

to the Poisson bracket. As well known, an arbitrary Poisson tensor, corresponding to the
Poisson bracket, can be written by the wedge product of appropriate commuting vector fields.
Then, the �-product can be easily constructed by the so-called Weyl–Moyal-like deformation.
The details will be given in the next section.

This paper is organized as follows. In section 1 we briefly present a number of basic
facts and definitions concerning the classical R-matrix formalism. In section 2 we review the
deformation quantization theory and present the Weyl–Moyal-like deformations. The Poisson
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algebras of formal Laurent series are introduced in section 3 and then, in section 4, the Weyl–
Moyal-like deformation procedure is applied to them. In section 5, we apply the formalism of
R-matrix to the quantized Poisson algebras and illustrate the results with particular examples.
Finally, in section 6 are given some conclusions.

2. Star products and deformation quantizable Poisson brackets

Let A = C∞(M) be the space of all smooth (R or C valued) functions on 2n-dimensional
smooth manifold M. Let {·, ·}PB be the classical Poisson bracket, which is bilinear, skew-
symmetric and satisfies the Jacobi identity. Obviously, A is a commutative, associative
algebra over R or C with the standard multiplication.

Let � be the deformed associative non-commutative multiplication on A given by the
following formula:

f � g =
∑
k�0

�
kBk(f, g) f, g ∈ A (2.1)

where � is the formal parameter and Bk : A×A −→ A are bidifferential (bilinear) operators.
We also define deformed bracket as a commutator

{f, g}� := 1

�
(f � g − g � f ). (2.2)

Definition 2.1. An associative deformed multiplication �, given by the formula (2.1), is a
formal quantization of the algebra A and is called the �-product if

(a) lim�→0 f � g = fg

(b) c � f = f � c = cf c ∈ R, C

(c) lim�→0 {f, g}� = {f, g}PB .

Lemma 2.2. The bracket (2.2) defined by the �-product is bilinear, skew-symmetric and
satisfies the Jacobi identity. So, it is a well-defined Lie bracket.

The proof is obvious as the Jacobi identity is a consequence of an associativity of
multiplication �. Hence, bracket (2.2) is called the deformation quantization of the underlying
classical Poisson bracket {· , ·}PB .

As follows from definition (2.1):

B0(f, g) = fg (2.3)

and

B1(f, g) − B1(g, f ) = {f, g}PB . (2.4)

The associativity of the �-product implies that the bilinear maps Bk satisfy the equations

k∑
s=0

[Bs(Bk−s(f, g), h) − Bs(f, Bs−k(g, h))] = 0 k � 1. (2.5)

Hence, B1 satisfies the equation

B1(f, g)h − f B1(g, h) + B1(fg, h) − B1(f, gh) = 0. (2.6)

Let D : A −→ A be a linear automorphism parametrized by �, such that

Df =
∑
k�0

�
kDkf D0 = 1 (2.7)
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where Dk are differential operators. Such an automorphism produces a new �′ in A in the
following way:

f �′ g := D(D−1f � D−1g). (2.8)

The associativity of the new �′ follows from the associativity of the old �-product, as

f �′ (g �′ h) = f �′ D(D−1g � D−1h) = D(D−1f � (D−1g � D−1h))

= D((D−1f � D−1g) � D−1h) = D(D−1f � D−1g) �′ h = (f �′ g) �′ h. (2.9)

By transformation (2.7) one finds the following expression:

B ′
1(f, g) = B1(f, g) − f D1g − D1g · f + D1(fg). (2.10)

Then

B ′
1(f, g) − B ′

1(g, f ) = B1(f, g) − B1(g, f ) = {f, g}PB (2.11)

and

lim
�→0

{f, g}�′ = lim
�→0

{f, g}� = {f, g}PB . (2.12)

Hence, the new �′ is the second well-defined �-product on A.

Definition 2.3. Two �-products: � and �′ are called gauge equivalent or simply equivalent if
there exists a linear automorphism D : A −→ A (2.7) such that (2.8).

Let us now consider a Weyl–Moyal-like deformation. It is well known that an arbitrary
classical Poisson bracket can be presented in the following form:

{f, g}PB = f

(
n∑

i=1

Yi ∧ Xi

)
g = f

(
n∑

i=1

(Yi ⊗ Xi − Xi ⊗ Yi)

)
g

=
n∑

i=1

[Yi(f )Xi(g) − Xi(f )Yi(g)] (2.13)

where Xi, Yi, i = 1, . . . , n are pair-wise commuting vector fields on 2n-dimensional smooth
manifold M and f, g ∈ A = C∞(M). The Jacobi identity for (2.13) follows from the
commutativity of vector fields Xi, Yi . From relation (2.4) there are two natural deformations
of the classical bracket (2.13) induced by

B1 = 1

2

n∑
i=1

Yi ∧ Xi (2.14)

and by

B ′
1 =

n∑
i=1

Yi ⊗ Xi (2.15)

respectively. In what follows, we will use the Einstein summation convention in the
case of repeating indices i, j at the vectors X, Y and a standard convention (with the
summation symbols) otherwise. The first case (2.14) leads to the Weyl–Moyal-like deformed
multiplication

f � g = f exp

[
�

2
Yi ∧ Xi

]
g. (2.16)

If the classical Poisson bracket (2.13) is a canonical one, i.e. Yi = ∂pi
, Xi = ∂xi

(∂x =
∂/∂x, ∂p = ∂/∂p), then product (2.16) is the Groenewold product [23] and the deformed
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bracket (2.2) is the well-known Moyal bracket [24]. Expanding (2.16) one finds

f � g =
∞∑

s=0

�
s

2ss!
f

k=s∏
k=1

Yik ∧ Xikg

=
∞∑

s=0

�
s

2ss!

s∑
m=0

(−1)m
(

s

m

) (
Yi1 . . . Yis−m

Xj1 . . . Xjm
f
) (

Yj1 . . . Yjm
Xi1 . . . Xis−m

g
)
.

(2.17)

The second case (2.15) leads to another Weyl–Moyal-like deformed multiplication

f � g = f exp[�Yi ⊗ Xi]g. (2.18)

Again, in the case of the canonical Poisson bracket (2.13) product (2.18) is the well-
known Kupershmidt–Manin (KM) product and the deformed bracket (2.2) is the KM bracket
[25, 26]. Expanding (2.18) one finds

f � g =
∞∑

s=0

�
s

s!

(
Yi1 . . . Yis f

)(
Xi1 · · · Xis g

)
. (2.19)

Lemma 2.4. The product (2.18) is associative. Moreover, it is a well-defined �-product.

Before we prove the lemma, let us introduce the product (2.18) in a little bit different
notation

f � g = exp
[
h̄Y

f

i X
g

i

]
(fg) (2.20)

where we use the symbols Y
f

i , X
g

i for vector fields acting only on f and g, respectively. The
following relations for commuting differential operators X and Y are fulfilled:

exp[�(X + Y )] = exp[�X] exp[�Y ] (2.21)

exp[�XY ](fg) = exp[�X(Yf + Y g)](fg) (2.22)

exp[�XY ](fg) = f exp[� (XY ⊗ 1 + X ⊗ Y + Y ⊗ X + 1 ⊗ XY)]g. (2.23)

The first relation is standard and for the second one the proof is as follows:

exp[�XY ](fg) =
∞∑

s=0

�
s

s!
XsY s(fg) =

∞∑
s=0

�
s

s!
Xs

s∑
n=0

(
s

n

)
(Y s−nf )(Y ng)

m=s−n=
∞∑

m=0

�
m

m!
Xm

∞∑
n=0

�
n

n!
Xn(Ymf )(Y ng) = exp[�XYf ] exp[�XYg](fg).

The last relation follows from the second one as

exp[�XY ](fg) = exp[�(Xf + Xg)(Y f + Y g)](fg)

= exp[�(Xf Y f + Xf Y g + XgY f + XgY g)](fg).

Proof. Using the above relations one proves the associativity of the product (2.18) as

(f � g) � h = (
exp

[
�Y

f

i X
g

i

]
(fg)

)
exp [�Yi ⊗ Xi] h

= exp
[
�Y

f

i X
g

i

]
exp

[
�(Y

f

i + Y
g

i )Xh
i

]
(fgh)

= exp
[
�Y

f

i

(
X

g

i + Xh
i

)]
exp

[
�Y

g

i Xh
i

]
(fgh)

= f exp [�Yi ⊗ Xi]
(
exp

[
�Y

g

i Xh
i

]
(gh)

) = f � (g � h).

The rest of properties (2.1) of the �-product is obvious. �
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Let us define the linear automorphism D : A −→ A by

D = exp

[
−�

2
YiXi

]
D−1 = exp

[
�

2
YiXi

]
. (2.24)

It relates the �-product (2.18) to the product (2.16) by relation (2.8) as

f �′ g = exp

[
−�

2
YiXi

](
exp

[
�

2
YiXi

]
(f ) exp [�Yi ⊗ Xi] exp

[
�

2
YiXi

]
(g)

)

= f exp

[
−�

2
(YiXi ⊗ 1 + Yi ⊗ Xi + Xi ⊗ Yi + 1 ⊗ YiXi)

]

× exp

[
�

2
YiXi ⊗ 1 + �Yi ⊗ Xi +

�

2
1 ⊗ YiXi

]
g

= f exp

[
�

2
(Yi ⊗ Xi − Xi ⊗ Yi)

]
g = f exp

[
�

2
Yi ∧ Xi

]
g.

Hence, the product (2.16) is also a well-defined �-product, equivalent to the �-product (2.18).
Applying to (2.18)

Dα = exp

[
−α

�

2
YiXi

]
(2.25)

one finds infinitely many well-defined �-products:

f �α g = Dα(D−αf � D−αg) = f exp

[
�

2
((2 − α) Yi ⊗ Xi − αXi ⊗ Yi)

]
g (2.26)

where α ∈ R. All of them are equivalent to each other and all of them are quantizations
of classical Poisson bracket (2.13). Note that our particular �-products (2.16) and (2.18) are
special cases of �α-product (2.26) with α = 1 and α = 0, respectively.

Now, we impose the Lie algebra structure on the algebra A, denoting it by Aα = (A, �α),
with the commutator

{f, g}�α := 1

�
(f �α g − g �α f ). (2.27)

Obviously, the automorphism (2.25) induces the isomorphisms between the Lie algebras

Dα′−α : Aα −→ Aα′ (2.28)

as

Dα′−α{f, g}�α = {Dα′−αf,Dα′−αg}�α′ . (2.29)

We will call the Lie algebras Aα gauge equivalent as one can choose freely the algebra one
wants to work with.

3. Poisson algebras of formal Laurent series

Consider the simplest possible case of dim M = 2, when M is parametrized by a pair of
coordinates (x, p). The Poisson bracket on A can be introduced in infinitely many ways as

{f, g}rPB := pr

(
∂f

∂p

∂g

∂x
− ∂f

∂x

∂g

∂p

)
r ∈ Z. (3.1)

Moreover, in A there exists the following Poisson subalgebra of formal Laurent series (Lax
polynomials):

A =
{

L =
∑
i∈Z

ui(x)pi

}
(3.2)
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where the coefficients ui are smooth functions of x. We assume from now on that x ∈ �,
where � = S

1 if ui are periodic or � = R if ui belong to the Schwartz space. An appropriate
symmetric product on A is given by a trace form (a, b)A := Tr(ab)

Tr L =
∫

�

resrL dx resrL ≡ ur−1(x) (3.3)

which is ad-invariant [17]. In expression (3.3) the integration denotes the equivalence class of
differential expressions modulo total derivatives. For a given functional F(L) = ∫

�
f (u) dx,

we define its differentials as

dF = δF

δL
=

∑
i

δF

δui

pr−1−i (3.4)

where δF/δu is the usual variational derivative.
We construct the simplest R-matrix, through a decomposition of A into a direct sum of

Lie subalgebras. For a fixed r let

A�−r+k = P�−r+kA =

L =

∑
i�−r+k

ui(x)pi




A<−r+k = P<−r+kA =
{

L =
∑

i<−r+k

ui(x)pi

} (3.5)

where P are appropriate projections. As presented in [17], A�−r+k, A<−r+k are Lie subalgebras
in the following cases:

1. k = 0 r = 0
2. k = 1, 2 r ∈ Z

which one can see through a simple inspection. Then, the R-matrix is given by the projections

R = 1
2 (P�−r+k − P<−r+k) = P�−r+k − 1

2 = 1
2 − P<−r+k (3.6)

and its adjoint is

R∗ = 1
2 (P ∗

�−r+k − P ∗
<−r+k) = 1

2 − P�2r−k = P<2r−k − 1
2 . (3.7)

Hence, the hierarchy of evolution equations (1.8) for Casimir functionals

Cn(L) = 1

n + 1
Tr (Ln+1) dCn(L) = Ln (3.8)

has the form of two equivalent representations

Ltq = {(Lq)�−r+k, L}rPB = −{(Lq)<−r+k, L}rPB L ∈ A (3.9)

which are Lax hierarchies. Note that (3.9) are multi-Hamiltonian systems [18].
We have to explain what type of Lax operators can be used in (3.9) to obtain a consistent

operator evolution equation equivalent with some nonlinear integrable dispersionless systems.
We are interested in extracting closed systems for a finite number of fields. To obtain a
consistent Lax equation, the Lax operator L has to form a proper submanifold of the full
Poisson algebra A, i.e. the left- and right-hand sides of expression (3.9) have to coincide.
They are given in the form [18]

k = 0 r = 0 : L = pN + uN−2p
N−2 + · · · + u1p + u0 (3.10)

k = 1 r ∈ Z : L = pN + uN−1p
N−1 + · · · + u1−mp1−m + u−mp−m (3.11)

k = 2 r ∈ Z : L = uNpN + uN−1p
N−1 + · · · + u1−mp1−m + p−m (3.12)

where the ui are dynamical fields.
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4. Weyl–Moyal-like deformation of Poisson algebras of formal Laurent series

The Poisson brackets (3.1) on A can be presented in the following form:

{f, g}rPB = f (pr∂p ∧ ∂x)g r ∈ Z. (4.1)

Note that this is a special case of (2.13), when Y1 = pr∂p and X1 = ∂x with [Y1, X1] = 0. For
a fixed r, the Poisson bracket (4.1) on A can be quantized in infinitely many equivalent ways
via the �α-product (2.26)

f �α g = f exp

[
�

2
((2 − α)pr∂p ⊗ ∂x − α∂x ⊗ pr∂p)

]
g. (4.2)

One finds that

(pr∂p)spm = cm
s (r)pm−s(1−r) s ∈ Z+ (4.3)

where for k ∈ Z

ck(1−r)
s (r) =




(1 − r)s
k!

(k − s)!
for k � s and r 
= 1

0 for s > k � 0 and r 
= 1

(−1 + r)s
(s − k − 1)!

s!
for k < 0 and r 
= 1

(4.4)

for m 
= k(1 − r)

cm
s (r) = m(m − (1 − r)) · · · · · (m − (s − 1)(1 − r)) (4.5)

and for an arbitrary m ∈ Z

cm
s (1) = ms. (4.6)

One also finds the following relation, which will be useful later:

cm
s (r) = (−1)sc(s−1)(1−r)−m

s (r). (4.7)

Hence, for α 
= 0, 2

upm �α vpn =
∞∑

s=0

�
s

2ss!

s∑
k=0

(−1)k
(

s

k

)
(2 − α)s−kαkcm

s−k(r)c
n
k (r)ukxv(s−k)xp

m+n−s(1−r)

(4.8)

for α = 0

upm �0 vpn =
∞∑

s=0

�
s

s!
cm
s (r)uvsxp

m+n−s(1−r) (4.9)

and for α = 2

upm �2 vpn =
∞∑

s=0

(−�)s

s!
cn
s (r)usxvp

m+n−s(1−r). (4.10)

Now, a simple inspection leads to the following relations: for α 
= 0, 2

{upm, vpn}�α = 1

�
(upm �α vpn − vpn �α upm)

=
∞∑

s=0

�
s−1

2ss!

s∑
k=0

(−1)k
(

s

k

)
(2 − α)s−kαk

× (
cm
s−k(r)c

n
k (r)ukxv(s−k)x − cm

k (r)cn
s−k(r)u(s−k)xvkx

)
pm+n−s(1−r) (4.11)
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for α = 0

{upm, vpn}�0 =
∞∑

s=0

�
s−1

s!

(
cm
s (r)uvsx − cn

s (r)usxv
)
pm+n−s(1−r) (4.12)

for α = 2

{upm, vpn}�2 =
∞∑

s=0

�
s−1

s!
(−1)s

(
cn
s (r)usxv − cm

s (r)uvsx

)
pm+n−s(1−r). (4.13)

So, we can quantize separately the Poisson subalgebra A (3.2) to the following Lie subalgebras
Aα = (A, �α) ⊂ Aα .

Obviously, the Lie algebras Aα for a fixed value of r are gauge equivalent under the
isomorphism (2.28)

Dα′−α : Aα −→ Aα′ Dα′−α = exp

[
(α − α′)

�

2
pr∂p∂x

]
. (4.14)

Let

L =
+∞∑

m=−∞
umpm ∈ Aα L′ =

+∞∑
n=−∞

vnp
n ∈ Aα′ (4.15)

then L′ = Dα′−αL and fields um, vn are mutually related in the following way:

vn =
∑
s�0

(
(α − α′)

�

2

)s 1

s!
cs(1−r)+n
s (r)(us(1−r)+n)sx . (4.16)

Because of the gauge equivalence between the Lie algebras Aα we can choose one Lie algebra
with a fixed value of α, make all necessary calculations, and then reconstruct all results for
Aα′ directly from the transformation (4.16).

On the other hand one can show the following relations:

u �α v = uv (4.17)

pm �α pn = pm+n (4.18)

pm �α u =
∑
s�0

�
s

s!
usx �α (pr∂p)spm (4.19)

u �α pm =
∑
s�0

�
s

s!
(pr∂p)spm �α usx. (4.20)

As all relations (4.17)–(4.20) have the same form independently of α we skip this index in
further considerations. Hence, we can quantize separately the algebra A to the following
special algebra of Lax operators:

a =
{

L =
∑
i∈Z

ui(x) � pi

}
. (4.21)

It is obviously associative algebra under commutation rules (4.19), (4.20). The algebra a in
the case of r = 0 was considered for the first time in [4]. Then, the Lie-bracket on a is given
by

{u � pm, v � pn}� = 1

�
(u � pm � v � pn − v � pn � u � pm)

=
∞∑

s=0

�
s−1

s!
[cm

s (r)uvsx − cn
s (r)usxv] � pm+n−s(1−r). (4.22)



From dispersionless to soliton systems via Weyl–Moyal-like deformations 12191

Note that the algebra differs from that defined in the second section, where we introduced
deformation quantization, as in (4.21) we also deformed the Lax polynomials. Let us remark
that the algebra a is naturally isomorphic to the algebra A0 as u �0 pm = upm. Hence, in
further considerations we will concentrate only on the algebra a, as the results for the algebras
Aα for all values of α can be obtained simply by transformations (4.16) from A0. The second
reason is that a can be considered as the generalization of the algebra of the pseudo-differential
operators and the algebra of the shift operators in the following sense.

Let us consider the case of r = 0, then the rules (4.19) and (4.20) take the particular form

pm � u =
∑
s=0

�
s

(
m

s

)
usx � pm−s (4.23)

u � pm =
∑
s=0

(−�)s
(

m

s

)
pm−s � usx (4.24)

and the Lie bracket (4.22) is

{u � pm, v � pn} =
∞∑

s=0

�
s−1

[(
m

s

)
uvsx −

(
n

s

)
usxv

]
� pm+n−s . (4.25)

Hence, the algebra a for fixed r = 0 is isomorphic to the algebra of pseudo-differential
operators

g =
{
L =

∑
i∈Z

ui(x)∂i
x

}
(4.26)

where the multiplication of two such operators uses the generalized Leibniz rule

∂mu =
∑
s=0

�
s

(
m

s

)
usx∂

m−s
x u∂m =

∑
s=0

(−�)s
(

m

s

)
∂m−s
x usx (4.27)

where � is a formal parameter. The Lie algebra structure of g is given by the bracket
[L1,L2] = 1

�
(L1L2 − L2L1). The isomorphism is given by the function sym : g → a

sym (L) = sym

(∑
i

ui(x)∂i
x

)
=

∑
i

ui(x) � pi = L. (4.28)

It has the important property that for arbitrary L1,L2 ∈ g

sym (L1L2) = sym (L1) � sym (L2). (4.29)

Then it follows that

sym ([L1,L2]) = {sym (L1), sym (L2)}� = {L1, L2}� . (4.30)

Hence, sym is the Lie algebra isomorphism. Obviously, such Lie algebras g for all values
of � are in a natural way isomorphic to the standard algebra of pseudo-differential operators
(� = 1).

Let us now consider the case of r = 1, then the rules (4.19) and (4.20) become

pm � u(x) =
∑
s=0

�
s

s!
ms (u(x))sx � pm

=: Emu(x) � pm = u(x + m�) � pm (4.31)

u(x) � pm =
∑
s=0

(−�)s

s!
mspm � (u(x))sx

=: pm � E−mu(x) = pm � u(x − m�) (4.32)
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where we use the formula for Taylor expansion and consider E as the shift operator. The Lie
bracket (4.22) is

{u(x) � pm, v(x) � pn}� = 1

�
[u(x)v(x + m�) − u(x + n�)v(x)] � pm+n. (4.33)

Hence, the algebra a for a fixed r = 1 is isomorphic to the algebra of shift operators

e =
{
L =

∑
i∈Z

ui(x)Ei

}
(4.34)

where E is the shift operator such that

Emu(x) = u(x + m�)Em u(x)Em = Emu(x − m�) (4.35)

where � is a formal parameter. The Lie algebra structure of e is given by the bracket
[L1,L2] = 1

�
(L1L2 − L2L1). The isomorphism is given by the function sym : e → a

sym (L) = sym

(∑
i

ui(x)Ei

)
=

∑
i

ui(x) � pi = L. (4.36)

As in the previous case, relations (4.29) and (4.30) are fulfilled for arbitrary L1,L2 ∈ e.
Let us investigate for a moment some properties of the Lie algebra a. The first observation

is the existence of a symmetric, non-degenerate and ad-invariant product on a allowing us to
identify a with its dual a∗.

Lemma 4.1. An appropriate scalar product on a is given by a trace form

(L1, L2)a := Tr (L1 � L2) (4.37)

where

Tr L =
∫

�

resrL dx resrL ≡ ur−1(x). (4.38)

Then (4.37) is symmetric, non-degenerate and ad-invariant.

Proof. The non-degeneracy of the product (4.37) is obvious. Let L1 = ∑
m um � pm,L2 =∑

n vn � pn, then using relations (4.19) and (4.7) we find

(L1, L2)a = Tr

(∑
m,n

um � pm � vn � pn

)

= Tr

(∑
m,n

∞∑
s=0

�
s

s!
cm
s (r)um (vn)sx � pm+n−s(1−r)

)

=
∫

�

∑
n

∞∑
s=0

�
s

s!
c(s−1)(1−r)−n
s (r)u(s−1)(1−r)−n (vn)sx dx

=
∫

�

∑
n

∞∑
s=0

�
s

s!
(−1)sc(s−1)(1−r)−n

s (r)(u(s−1)(1−r)−n)sxvn dx

=
∫

�

∑
n

∞∑
s=0

�
s

s!
cn
s (r)(u(s−1)(1−r)−n)sxvn dx

= Tr

(∑
m,n

∞∑
s=0

�
s

s!
cn
s (r) (um)sx vn � pm+n−s(1−r)

)

= Tr

(∑
m,n

vn � pn � um � pm

)
= (L2, L1)a
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where we have used the integration by parts. The ad-invariance follows from associativity of
�-product and symmetry of the product (4.37) as

({A,B}� , C)a = Tr

(
1

�
(A � B � C − B � A � C)

)

= Tr

(
1

�
(B � C � A − C � B � A)

)
= ({B,C}� , A)a . �

As a consequence, for operators L = ∑
i ui � pi , the vector fields d

dt
L ≡ Lt and

differentials dH(L) are conveniently parametrized by

Lt =
∑

i

(ui)t � pi dH(L) = δH

δL
=

∑
i

pr−1−i �
δH

δui

(4.39)

where ∂H/∂ui is the usual variational derivative of a functional H = ∫
�

h(u, ux, . . .) dx. In
these frames the trace duality assumes the usual Euclidean form

(dH,Lt)a = Tr (dH � Lt) =
∑

i

∫
�

δH

δui

(ui)t dx. (4.40)

Now, one can simply rewrite the trace formula from a to A0 as a ∼= A0. Then, the
appropriate trace formulae on Aα for Lax polynomials L = ∑

n unp
n are given by

Tr L =
∫

�

resrL dx resrL ≡ ur−1(x) (4.41)

which are well defined, as the trace formula is invariant under transformations (4.14) since
from (4.16) it follows that vr−1 = ur−1. Hence, the scalar products take the form

(L1, L2)Aα
:= Tr (L1 �α L2) (4.42)

and differentials dH(L) are conveniently parametrized by

dH(L) = δH

δL
=

∑
n

pr−1−n �α δH

δun

. (4.43)

Note that in formulae (4.41)–(4.43) one has to use the explicit form of �α-products.

5. R-matrix formalism and Lax hierarchies for Lie algebra a

To construct the integrable field systems one has to split the algebra a into a direct sum of Lie
subalgebras. Observing (4.22) one finds that in general it can be done only for r = 0 or r = 1.
Let us remark that it is possible to choose a Lie subalgebra of a in the form{

L =
∑
i∈Z

ui(x) � pi(1−r)

}
r 
= 1 (5.1)

which can be further split into a direct sum of Lie subalgebras, but this case is simply related
by the transformation p′ = p1−r , x ′ = x/(1 − r) to the algebra a for the case of r = 0.

Now, we decompose a for r = 0, 1 into a direct sum of Lie subalgebras in the following
way. Let

a�−r+k = P�−r+ka =

L =

∑
i�−r+k

ui(x) � pi




a<−r+k = P<−r+ka =
{

L =
∑

i<−r+k

ui(x) � pi

} (5.2)
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where P are appropriate projections. Then, a�−r+k, a<−r+k are Lie subalgebras in the case of
r = 0 for k = 0, 1, 2 and in the case of r = 1 for k = 1, 2. Hence, the R-matrix is given by
the projections

R = 1
2 (P�−r+k − P<−r+k) = P�−r+k − 1

2 = 1
2 − P<−r+k (5.3)

and its adjoint is

R∗ = 1
2 (P ∗

�−r+k − P ∗
<−r+k) = 1

2 − P�2r−k = P<2r−k − 1
2 . (5.4)

The hierarchy of evolution equations is generated by the Casimir functionals

Cn(L) = 1

n + 1
Tr (Ln+1) dCn(L) = Ln Ln = L � L � . . . � L (5.5)

and for appropriate k has the form of two equivalent representations

Ltn = {(Ln)�−r+k, L}� = −{(Lq)<−r+k, L}� (5.6)

which are Lax hierarchies.
The Lie algebras Aα can be decomposed into a direct sum of Lie subalgebras in exactly

the same way as A0
∼= a. Hence, the R-matrix (5.3) is invariant under transformations (4.14).

Moreover, as transformations (4.14) are Lie algebra isomorphisms (2.29) the Lax hierarchies
(5.6) are also invariant with respect to them.

For constructing (1+1)-dimensional closed systems with a finite number of fields we have
to choose properly restricted Lax operators L which give consistent Lax equations (5.6). To
obtain a consistent Lax equation, the Lax operator L has to form a proper submanifold of the
full Poisson algebra under consideration, i.e. the left- and right-hand sides of expression (5.6)
have to lie inside this submanifold. In the case of r = 0 the admissible simplest restricted Lax
operators are given in the form

k = 0 : L = pN + uN−2 � pN−2 + · · · + u1 � p + u0 (5.7)

k = 1 : L = pN + uN−1 � pN−1 + · · · + u0 + p−1 � u−1 (5.8)

k = 2 : L = uN � pN + uN−1 � pN−1 + · · · + u0 + p−1 � u−1 + p−2 � u−2. (5.9)

In the case of r = 1 the admissible simplest restricted Lax operators are

k = 1 : L = pN + uN−1 � pN−1 + · · · + u1−m � p1−m + u−m � p−m (5.10)

k = 2 : L = uN � pN + uN−1 � pN−1 + · · · + u1−m � p1−m + p−m. (5.11)

We will now compare the Lax operators related to soliton systems with the Lax operators
related to the dispersionless systems. As follows, the class of operators (5.7) is the same as
the class of dispersionless operators (3.10). Hence, all dispersionless systems for r = 0 and
k = 0 have counterpart soliton systems. For r = 0 and k = 1, 2 the classes of dispersionless
Lax operators are wider. The operators (5.8) by the quasi-classical limit (� → 0) reduce to the
operators (3.11) for m = 1. The operators (5.9) reduce to (3.12) for m = 2 but the field u−2 by
the quasi-classical limit becomes time independent. For r = 1 the classes of operators (5.10),
(5.11) and (3.11), (3.12) are the same, respectively. Thus, all of them have the counterpart
lattice field systems. The remaining dispersionless systems for r 
= 0, 1 and some for r = 0
do not have counterpart soliton systems in the quantization scheme considered.

The evolution systems (5.6), with the Casimir functionals (5.5) as Hamiltonian functions,
are tri-Hamiltonian

Ltn = θ1(L) dCn = 1
2θ2(L) dCn−1 = θ3(L) dCn−2 (5.12)
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as it was for the algebra of pseudo-differential operators and the algebra of shift operators.
Nevertheless, as we work with restrictions (5.7)–(5.11), a reduction procedure for the
Hamiltonian structures of the general representations (5.12) will be necessary.

The case of r = 0. All Lax operators (5.7)–(5.9) form a proper submanifold with respect to the
linear Poisson tensor (1.9) which is given for R-matrix (5.3) in two equivalent representations

θ1(L)dH = {(dH)�k, L}� − ({dH,L}�)�−k

= −{(dH)<k, L}� + ({dH,L}�)<−k k = 0, 1, 2. (5.13)

Since (∂H/∂L)�k = 0 for k = 0, 1, the linear Poisson tensor for these cases is given in
simpler form

θ1

(
δH

δL

)
=

({
L,

δH

δL

}
�

)
�−k

. (5.14)

The quadratic bracket for k = 0 is given by (1.12)

θ2(L)dH = �{L, ({dH,L}+
� )�0}� − �{L, ({dH,L}�)�0}+

�

= −�{L, ({dH,L}+
� )<0}� + �{L, ({dH,L}�)<0}+

� (5.15)

and can be properly restricted to a subspace of the form

L = pN + uN−1 � pN−1 + uN−2 � pN−2 + · · · + u1 � p + u0. (5.16)

Hence a Dirac reduction uN−1 = 0 is required, with the final result

θ red
2

(
δH

δL

)
= 1

�

[(
L �

δH

δL

)
�0

� L − L �

(
δH

δL
� L

)
�0

]
+

�

N

{
∂−1
x res

{
δH

δL
,L

}
�

, L

}
�

(5.17)

where θ red
2 (L) is compatible with the linear one (5.14). For k = 1, the quadratic tensor θ2(L)

is given by (1.10)

θ2(L) dH = 1

�
[A1(L � dH) � L − L � A2(dH � L) + S(dH � L) � L − L � S∗(L � dH)]

(5.18)

where
A1(b) = b�1 − b0 + b−1 − b<−1 − 2∂−1

x res b b ∈ a

A2(b) = b�0 − b<0 + 2∂−1
x res b

S(b) = −2b−1 + 2∂−1
x res b S∗(b) = −2b0 − 2∂−1

x res b

(5.19)

satisfy (1.11). The Poisson tensor (5.18) admits a proper restriction to Lax operators of the
form (5.8). Hence, we have

θ2

(
δH

δL

)
= 1

�

[(
L �

δH

δL

)
�1

� L − L �

(
δH

δL
� L

)
�0

+ L �

(
L �

δH

δL

)
0

]

− ∂−1
x res

({
δH

δL
,L

}
�

)
� L + �

{
∂−1
x res

{
δH

δL
,L

}
�

, L

}
�

. (5.20)

For k = 2, in contrast to the previous cases, we still do not know the proper form of the
quadratic tensor θ2.

The restricted Lax operators (5.7)–(5.9) do not form proper submanifolds with respect to
the cubic Poisson tensor (1.15)

θ3(L) dH = {(L � dH � L)�k, L}� − L � ({dH,L}�)�−k � L

= −{(L � dH � L)<k, L}� + L � ({dH,L}�)<k � L k = 0, 1, 2. (5.21)
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Nevertheless, the Dirac reduction can be applied. Here, in contrast to the previous cases,
the number of constraints depends on N, so the reduction has to be considered separately for
each N.

The case of r = 1. Both Lax operators (5.10) and (5.11) form a proper submanifold with
respect to the linear Poisson tensor (1.9)

θ1(L) dH = {(dH)�−1+k, L}� − ({dH,L}�)�2−k

= − {(dH)<−1+k, L}� + ({dH,L}�)<2−k k = 1, 2. (5.22)

Hence, no additional restrictions are needed.
The quadratic tensor is given by the special case (1.12), nevertheless the Lax operators

(5.10), (5.11) do not form a proper submanifold. Actually, the proper submanifold is

L = uN � pN + uN−1 � pN−1 + · · · + u1−m � p1−m + u−m � p−m. (5.23)

Thus for k = 1 the Dirac constraint uN = 1 gives

θ red
2

(
δH

δL

)
= �

{({
L,

δH

δL

}+

�

)
�0

, L

}
�

− �

{
L,

({
δH

δL
,L

}
�

)
�1

}+

�

+ �

{
(1 + E−N)(1 − E−N)−1res

{
δH

δL
,L

}
�

, L

}
�

(5.24)

and for k = 2 with Dirac constraint u−m = 1 we get

θ red
2

(
δH

δL

)
= �

{({
L,

δH

δL

}+

�

)
�1

, L

}
�

− �

{
L,

({
δH

δL
,L

}
�

)
�0

}+

�

− �

{
(1 + Em)(1 − Em)−1res

{
δH

δL
,L

}
�

, L

}
�

. (5.25)

The restricted Lax operators (5.10), (5.11) do not form proper submanifolds with respect
to the cubic Poisson tensor (1.15)

θ3(L) dH = {(L � dH � L)�−1+k, L}� − L � ({dH,L}�)�2−k � L

= −{(L � dH � L)<−1+k, L}� + L � ({dH,L}�)<2−k � L k = 1, 2. (5.26)

Nevertheless, the Dirac reduction can be applied. Again, the number of constraints depends
on N, so the reduction has to be considered separately for each N.

Let us now consider more precisely the transformations from the evolution systems
constructed from the algebra a to the systems constructed from Aα for r = 0 and r = 1. The
linear transformation Dα : A0 −→ Aα is simply given by (4.14) as a ∼= A0. First consider the
case of r = 0. Let

L =
∑
m�0

umpm +
∑
m<0

pm �0 um ∈ A0

Lα =
∑
n�0

wnp
n +

∑
n<0

pn �α wn ∈ Aα.
(5.27)

Then, Lα = DαL, where Dα = exp
(− 1

2α�∂p∂x

)
. As follows the dynamical fields are

interrelated in the following way for n � 0:

wn =
∑
s�0

(
−α

2
�

)s
(

n + s

s

)
(un+s)sx

un =
∑
s�0

(α

2
�

)s
(

n + s

s

)
(wn+s)sx

(5.28)
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and for n < 0 un = wn. We denote this transformation in the operator form by w = φ(u),
then the Fréchet derivative of φ, such that (wm)t = ∑

n(φ
′)nm (un)t , is

(φ′)nm =
∑
k�0

∂wm

∂(un)kx

∂k
x =




(
−α

2
�

)n−m
(

n

n − m

)
∂n−m
x for n � m � 0

δm,n for m < 0

0 for the rest

(5.29)

and its adjoint is

(φ′†)mn =
∑
k�0

(−1)k∂k
x

∂wm

∂(un)kx

=




(α

2
�

)n−m
(

n

n − m

)
∂n−m
x for n � m � 0

δm,n for m < 0

0 for the rest.

(5.30)

Consider now the case of r = 1. Let

L =
∑
m

umpm ∈ A0 Lα =
∑

n

wnp
n ∈ Aα. (5.31)

Then, Lα = DαL, where Dα = exp
(− 1

2α�p∂p∂x

)
and from (4.16) the relations between the

dynamical fields are

wn(x) =
∑
s�0

(
−α

2
�

)s 1

s!
ns (un(x))sx = E−nα/2un(x) = un

(
x − n

α

2
�

)

un(x) =
∑
s�0

(α

2
�

)s 1

s!
ns (wn(x))sx = E−nα/2wn(x) = wn

(
x + n

α

2
�

)
.

(5.32)

Again, if we denote the transformation as w = φ(u), then

(φ′)nm = δm,nE−mα/2 and (φ′†)nm = δm,nEmα/2. (5.33)

Thus, obviously in both cases, when

ut = θ dH wt = θ̃ dH̃ (5.34)

then

wt = φ′ut θ̃ = φθφ′† dH = φ′† dH̃ . (5.35)

We will now display examples of some field and lattice soliton systems calculated in
the quantization scheme considered. We consider the Lax hierarchy (5.6) with little changed
numerations of evolution variables

Ltn = {(Ln/N)�−r+k, L}� (5.36)

where N is the highest order of the Lax operator L. We will exhibit the first non-trivial equation
of the Lax hierarchy (5.36). For simplicity we present only the bi-Hamiltonian structure. The
advantage of the use of a algebra is that during whole calculations there is no need to use the
�α-product in explicit form and we only use the commutation relations (4.19), (4.20).
As a result, one gets the same equations and Poisson structures as these obtained from
quantized algebra A0. The Hamiltonian systems related to quantized algebras Aα are simply
reconstructed via the linear transformation (5.28), (5.32) and formulae (5.35). Such a
procedure of calculations is applied in the present examples and we have written only the
final results for Aα .
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Example 5.1. The Boussinesq system: r = 0, k = 0.
The dispersionless Boussinesq Hamiltonian systems are given in the form(

u

v

)
t2

=
(

2vx

− 2
3uux

)
= θ1dH1 = θ red

2 dH2 (5.37)

where the Poisson tensors are

θ1 = 3

(
0 ∂x

∂x 0

)
θ red

2 =
(

∂xu + u∂x 2∂xv + v∂x

∂xv + 2v∂x − 2
3u∂xu

)
(5.38)

and

H1 = 1

3

∫
�

(
−1

9
u3 + v2

)
dx H2 =

∫
�

v dx. (5.39)

System (5.37) has the following Lax representation [18]:

Lt2 = {(
L2/3

)
�0, L

}0
PB

(5.40)

for the Lax operator in the form

L = p3 + up + v. (5.41)

The quantization procedure leads now to the following Lax operator in a:

L = p3 + u � p + v. (5.42)

Then, one can derive the Boussinesq system from

Lt2 = {(
L2/3)

�0, L
}

�
. (5.43)

Now, by the transformation to the algebras Aα one finds the following systems:(
u

v

)
t2

=
(

2vx + (α − 1) �u2x

− 2
3uux + (1 − α) �v2x − (

α2

2 − α + 2
3

)
�

2u3x

)

= θ1 dH1 = θ2 dH2. (5.44)

The respective Poisson tensors can be calculated from (5.14)

θ1 = 3

(
0 ∂x

∂x 0

)
(5.45)

and from (5.17)

θ red
2 = 1

2

(
θuu θuv

−(θuv)† θvv

)
(5.46)

where

θuu = ∂xu + u∂x + 2�
2∂3

x

θuv = 2∂xv + v∂x + �
[
α∂xux + αux∂x − ∂2

xu + αu∂2
x

]
+ (α − 1) �

3∂4
x

θvv = −2

3
u∂xu + (1 − α) �

[
∂2
x v − v∂2

x

] −
(

α2

4
− α

2
+

2

3

)
�

2
[
∂3
xu + u∂3

x

]
− α

2

(α

2
− 1

)
�

2
[
∂2
xux − ux∂

2
x

] −
(

α2

2
− α +

2

3

)
�

4∂5
x .

The Hamiltonians are given in the following form:

H1 = 1

3

∫
�

[
−1

9
u3 + v2 + (α − 1) �uxv +

α2

4
�

2u2
x +

(
α

2
− 1

3

)
�

2uu2x

]
dx (5.47)

H2 =
∫

�

v dx. (5.48)
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In the case of α = 0 (5.44) is obviously the standard case of a Boussinesq system obtained
from Gel’fand–Dikii hierarchy, for α = 1 it is the Moyal case. The limit � → 0 of (5.44)
gives (5.37) as it should.

Example 5.2. The Kaup–Broer (KB) system: r = 0, k = 1.
The dispersionless system is given by(

u

v

)
t2

= 2

(
uux + vx

uxv + uvx

)
= θ1 dH1 = θ red

2 dH2 (5.49)

where

θ1 =
(

0 ∂x

∂x 0

)
θ red

2 =
(

2∂x ∂xu

u∂x ∂xv + v∂x

)

H1 =
∫

�

(u2v + v2) dx H2 =
∫

�

uv dx

(5.50)

is known as the Benney system. The Lax representation for (5.49) is [18]

Lt2 = {(L2)�0, L}0
PB (5.51)

where

L = p + u + vp−1. (5.52)

The quantized Lax operator in a is

L = p + u + p−1 � v. (5.53)

We derive the KB system, which is the dispersive Benney system, from

Lt2 = {(L2)�0, L}�. (5.54)

And, by the transformation to the algebras Aα one gets the following systems:(
u

v

)
t2

=
(

2uux + (α + 1) �u2x + 2vx

2 (uv)x − α
(
1 − α

2

)
�

2u3x − (α + 1)�v2x

)

= θ1 dH1 = θ2 dH2.

(5.55)

The Poisson tensors are

θ1 =
(

0 ∂x

∂x 0

)
(5.56)

and

θ2 = 1

2

(
∂x ∂xu + (α + 1) �∂2

x

u∂x − (α + 1)∂2
x v∂x + ∂xv + 1

2α�
(
u∂2

x − ∂2
xu

) − α
(
1 + α

2

)
�

2∂3
x

)
. (5.57)

The Hamiltonians are

H1 =
∫

�

[
u2v + v2 − (α + 1) uvx +

α

2
�u2ux +

α2

4
�

2u2
x

]
dx (5.58)

H2 =
∫

�

[
uv +

α

2
�uux

]
dx. (5.59)

For α = 0 (5.55) is the standard case of the KB system and for α = 1 it is the Moyal case.
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Example 5.3. Toda system: r = 1, k = 1.
The dispersionless Toda system has the form(

u

v

)
t2

=
(

vx

uxv

)
= θ1 dH1 = θ red

2 dH2 (5.60)

where

θ1 =
(

0 ∂xv

v∂x 0

)
π red

0 =
(

∂xv + v∂x u∂xv

v∂xu 2v∂xv

)

H1 = 1

2

∫
�

(u2 + 2v) dx H2 =
∫

�

u dx.

(5.61)

The Lax representation for (5.60) is [18]

Lt2 = {(L2)�0, L}1
PB (5.62)

where the Lax operator is

L = p + u + vp−1. (5.63)

Then, the quantization scheme leads to the following Lax operator in a in the form:

L = p + u(x) + v(x) � p−1. (5.64)

One derives the Toda system from

Lt2 = {(L2)�0, L}�. (5.65)

Next, by the transformation to the algebras Aα one finds the following systems:(
u(x)

v(x)

)
t2

= 1

�

(
v
(
x +

(
1 − α

2

)
�
) − v

(
x − α

2 �
)

v(x)
[
u
(
x + α

2 �
) − u

(
x − (

1 − α
2

)
�
)]
)

= θ1 dH1 = θ2 dH2. (5.66)

The respective Poisson tensors are

θ1 = 1

�

(
0

[
E (1−α/2) − E−α/2

]
v(x)

v(x)
[
Eα/2 − E−(1−α/2)

]
0

)
(5.67)

and

θ red
2 = 1

�

(
E (1−α/2)v(x)Eα/2 − E−α/2v(x)E (α/2−1) u(x)

[
E (1−α/2) − E−α/2

]
v(x)

v(x)
[
Eα/2 − E (α/2−1)

]
u(x) v(x)[E − E−1]v(x)

)
. (5.68)

The Hamiltonians are

H1 =
∫

�

[
v (x) +

1

2
u2(x)

]
dx H2 =

∫
�

u(x) dx. (5.69)

The case of α = 0 of (5.66) is the standard case of the Toda system, the case of α = 1 is
the Moyal case. Note that in our construction the Toda equation depends on the continuous
coordinate x in contrast to the standard case when x is an integer.

Example 5.4. Three field system: r = 1, k = 2.
The dispersionless system is given in the form

u

v

w




t2

=

 2uwx

ux + vwx

vx


 = θ1 dH1 = θ red

2 dH2 (5.70)
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where the Poisson tensors are

θ1 = 3




0 0 2u∂x

0 ∂xu + u∂x v∂x

2∂xu ∂xv 0




θ red
2 =




6u∂xu 4u∂xv 2u∂xw

4v∂xu 2v∂xv + u∂xw + w∂xu v∂xw + ∂xu + 2u∂x

2w∂xu w∂xv + 2∂xu + u∂x ∂xv + v∂x




(5.71)

and

H1 =
∫

�

(
v +

1

2
w2

)
dx H2 =

∫
�

w dx. (5.72)

System (5.70) has the following Lax representation:

Lt2 = {(L)�1 , L}1
PB (5.73)

for the Lax operator in the form

L = up2 + vp + w + p−2. (5.74)

The quantization procedure leads to the following Lax operator in a:

L = u(x) � p2 + v(x) � p + w(x) + p−2. (5.75)

Then, one derives the dispersive version of (5.70) from

Lt2 = {(L)�1 , L}� (5.76)

and by the transformation to the algebras Aα one finds the following systems:

u(x)t2 = 1

�
u(x) [w (x + (2 − α)�) − w (x − α�)]

v(x)t2 = 1

�

[
u
(
x +

α

2
�

)
− u

(
x +

(α

2
− 1

)
�

)
(5.77)

+ v(x)
[
w
(
x −

(α

2
− 1

)
�

)
− w

(
x − α

2
�

)]]
w(x)t2 = 1

�

[
v
(
x +

α

2
�

)
− v

(
x +

(α

2
− 1

)
�

)]
.

The linear Poisson tensor is

θ1 = 1

�




0 0 θuw
1

0 θvv
1 θvw

1

−(
θuw

1

)† −(
θvw

1

)†
0


 (5.78)

where

θuw
1 = u(x)[E (2−α) − E−α]

θvv
1 = Eα/2u(x)E (1−α/2) − E (α/2−1)u(x)E−α/2

θvw
1 = v(x)

[
E (1−α/2) − E−α/2

]
.

The quadratic Poisson tensor is

θ red
2 = 1

�




θuu
2 θuv

2 θuw
2

−(
θuv

2

)†
θvv

2 θvw
2

−(
θuw

2

)† −(
θvw

2

)†
θww

2


 (5.79)
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where

θuu
2 = u(x)[E2 + E − E−1 − E−2]u(x)

θuv
2 = u(x)

[
E (2−α/2) + E (1−α/2) − E−α/2 − E−(1+α/2)

]
v(x)

θuw
2 = u(x)[E (2−α) − E−α]w(x)

θvv
2 = v(x)[E − E−1]v(x) + Eα/2u(x)E (1−α)w(x)Eα/2 − E−α/2w(x)E (α−1)u(x)E−α/2

θvw
2 = v(x)

[
E (1−α/2) − E−α/2]w(x) + Eα/2u(x)E (2−α) − E (α/2−1)u(x)E−α

θww
2 = Eα/2v(x)E (1−α/2) − E (α/2−1)v(x)E−α/2.

The respective Hamiltonians have the form

H1 =
∫

�

[
v(x) +

1

2
w(x)2

]
dx H2 =

∫
�

w(x)dx. (5.80)

The case with α = 0 (� = 1) and integer x was constructed in [13].

6. Conclusions

In this paper we have presented a systematic construction of the field and lattice soliton
systems from underlying multi-Hamiltonian dispersionless systems. Actually, the passage
has been made on the level of appropriate Lax representations through the Weyl–Moyal-like
deformation quantization procedure. In a previous paper [18], we have constructed Lax
representations for a wide class of dispersionless systems with multi-Hamiltonian structures,
derived from classical R-matrix theory. The number of constructed dispersionless systems
is much greater than the number of known soliton systems (dispersive integrable systems).
So, the question arises whether for any dispersionless Lax hierarchy one can construct a
related soliton hierarchy. We have tried to obtain an answer to this question via the procedure
of deformation quantization for Poisson algebras of dispersionless systems and appropriate
R-matrix theory. We have managed to quantize all Poisson algebras (with arbitrary r (3.1)) but
the R-matrix, at least of the form (1.17), exists only in the case of two algebras, i.e. for r = 0
and r = 1, respectively. The first case leads to soliton field systems related to the algebra of
pseudo-differential operators (4.26), and the second one leads to lattice soliton systems related
to the algebra of shift operators (4.34). In that sense, although we have failed to construct new
soliton equations through the deformation procedure presented, nevertheless we have found a
unified procedure for the construction of field and lattice Hamiltonian soliton systems in one
scheme.
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